8 research outputs found

    Rethinking the Discount Factor in Reinforcement Learning: A Decision Theoretic Approach

    Full text link
    Reinforcement learning (RL) agents have traditionally been tasked with maximizing the value function of a Markov decision process (MDP), either in continuous settings, with fixed discount factor γ<1\gamma < 1, or in episodic settings, with γ=1\gamma = 1. While this has proven effective for specific tasks with well-defined objectives (e.g., games), it has never been established that fixed discounting is suitable for general purpose use (e.g., as a model of human preferences). This paper characterizes rationality in sequential decision making using a set of seven axioms and arrives at a form of discounting that generalizes traditional fixed discounting. In particular, our framework admits a state-action dependent "discount" factor that is not constrained to be less than 1, so long as there is eventual long run discounting. Although this broadens the range of possible preference structures in continuous settings, we show that there exists a unique "optimizing MDP" with fixed γ<1\gamma < 1 whose optimal value function matches the true utility of the optimal policy, and we quantify the difference between value and utility for suboptimal policies. Our work can be seen as providing a normative justification for (a slight generalization of) Martha White's RL task formalism (2017) and other recent departures from the traditional RL, and is relevant to task specification in RL, inverse RL and preference-based RL.Comment: 8 pages + 1 page supplement. In proceedings of AAAI 2019. Slides, poster and bibtex available at https://silviupitis.com/#rethinking-the-discount-factor-in-reinforcement-learning-a-decision-theoretic-approac

    Fixed-Horizon Temporal Difference Methods for Stable Reinforcement Learning

    Full text link
    We explore fixed-horizon temporal difference (TD) methods, reinforcement learning algorithms for a new kind of value function that predicts the sum of rewards over a fixed\textit{fixed} number of future time steps. To learn the value function for horizon hh, these algorithms bootstrap from the value function for horizon h−1h-1, or some shorter horizon. Because no value function bootstraps from itself, fixed-horizon methods are immune to the stability problems that plague other off-policy TD methods using function approximation (also known as "the deadly triad"). Although fixed-horizon methods require the storage of additional value functions, this gives the agent additional predictive power, while the added complexity can be substantially reduced via parallel updates, shared weights, and nn-step bootstrapping. We show how to use fixed-horizon value functions to solve reinforcement learning problems competitively with methods such as Q-learning that learn conventional value functions. We also prove convergence of fixed-horizon temporal difference methods with linear and general function approximation. Taken together, our results establish fixed-horizon TD methods as a viable new way of avoiding the stability problems of the deadly triad.Comment: AAAI 202

    Large Language Models Are Human-Level Prompt Engineers

    Full text link
    By conditioning on natural language instructions, large language models (LLMs) have displayed impressive capabilities as general-purpose computers. However, task performance depends significantly on the quality of the prompt used to steer the model, and most effective prompts have been handcrafted by humans. Inspired by classical program synthesis and the human approach to prompt engineering, we propose Automatic Prompt Engineer (APE) for automatic instruction generation and selection. In our method, we treat the instruction as the "program," optimized by searching over a pool of instruction candidates proposed by an LLM in order to maximize a chosen score function. To evaluate the quality of the selected instruction, we evaluate the zero-shot performance of another LLM following the selected instruction. Experiments on 24 NLP tasks show that our automatically generated instructions outperform the prior LLM baseline by a large margin and achieve better or comparable performance to the instructions generated by human annotators on 19/24 tasks. We conduct extensive qualitative and quantitative analyses to explore the performance of APE. We show that APE-engineered prompts can be applied to steer models toward truthfulness and/or informativeness, as well as to improve few-shot learning performance by simply prepending them to standard in-context learning prompts. Please check out our webpage at https://sites.google.com/view/automatic-prompt-engineer
    corecore